留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳通道谐振器检测与表征中的动力学问题

闫寒 张文明

闫寒, 张文明. 微纳通道谐振器检测与表征中的动力学问题[J]. 力学进展, 2019, 49(1): 201903. doi: 10.6052/1000-0992-18-006
引用本文: 闫寒, 张文明. 微纳通道谐振器检测与表征中的动力学问题[J]. 力学进展, 2019, 49(1): 201903. doi: 10.6052/1000-0992-18-006
YAN Han, ZHANG Wenming. Dynamics problems of micro/nano channel resonators for detection and characterization[J]. Advances in Mechanics, 2019, 49(1): 201903. doi: 10.6052/1000-0992-18-006
Citation: YAN Han, ZHANG Wenming. Dynamics problems of micro/nano channel resonators for detection and characterization[J]. Advances in Mechanics, 2019, 49(1): 201903. doi: 10.6052/1000-0992-18-006

微纳通道谐振器检测与表征中的动力学问题

doi: 10.6052/1000-0992-18-006
基金项目: 国家杰出青年科学基金(11625208)、国家自然科学基金(11572190,11322215)资助项目
详细信息
    作者简介:

    通讯作者: † E-mail: wenmingz@sjtu.edu.cn

    作者简介: 张文明, 上海交通大学特聘教授, 博士生导师.国家杰出青年科学基金获得者、国家优秀青年科学基金获得者、国家“万人计划”中组部青年拔尖人才、教育部霍英东青年基金获得者、上海市曙光学者、上海市青年科技启明星、上海市青年五四奖章标兵.2010年在日本京都大学做JSPS特别研究员.主要从事机械动力学设计理论与方法及振动控制等方面的教学与科研工作.在国际权威期刊发表SCI论文110余篇, SCI他引1000余次;公开/授权国家发明专利30余项, 软件著作权3项; 出版学术专著1部,参编中英文专著3部.中国微米纳米技术学会微纳执行器与微系统分会副理事长、中国力学学会青年工作委员会委员、中国振动工程学会非线性振动专业委员会委员、转子动力学专业委员会常务理事;担任多个国内外期刊编委;获教育部自然科学奖一等奖、中国振动工程学会青年科技奖等多项奖励.

    通讯作者:

    张文明

  • 中图分类号: O326;

Dynamics problems of micro/nano channel resonators for detection and characterization

More Information
    Author Bio:

    corresponding Author: † E-mail: wenmingz@sjtu.edu.cn

    Corresponding author: ZHANG Wenming
  • 摘要: 微纳通道机械谐振器在液体环境中具有超高的谐振频率、品质因子和灵敏度,常用于液体环境中的高精度检测与表征,在生物、医药、化工等领域有着广阔的应用前景.微纳通道机械谐振器的检测与表征功能高度依赖其动力学特性,而此类器件是由谐振结构、内部流体、被检测物和外部激励等多因素组成的耦合系统,涉及的动力学问题较为复杂,已成为谐振器件研究中的前沿热点和瓶颈问题.本文综述了微纳通道机械谐振器的研究进展,总结了谐振器件实现高精度检测与表征功能时的动力学设计原理,详细讨论了谐振器件的稳定性、频响特性、能量耗散、频率波动等动态特性,阐明了不同动力学问题的物理机制及其对谐振器性能的影响规律,可为深入厘清微纳通道机械谐振器的动力学设计问题,提高器件动态性能提供理论参考和技术支撑,对超高频、超高灵敏度谐振器的设计、制造及应用发展具有重要意义.

     

  • [1] 张文明, 闫寒, 彭志科, 孟光. 2017. 微纳机械谐振器能量耗散机理研究进展. 科学通报, 19: 2077-2093

    (Zhang W M, Yan H, Peng Z K, Meng G.2017. Research progress on energy dissipation mechanisms in micro- and nano-mechanical resonators. Chinese Science Bull, 19: 2077-2093).
    [2] Abbasnejad B, Shabani R, Rezazadeh G.2015. Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluidics and Nanofluidics, 19: 577-584.
    [3] Agache V, Blanco-Gomez G, Baleras F, Caillat P.2011. An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid. Lab on A Chip, 11: 2598-2603.
    [4] Arlett J L, Roukes M L.2010. Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators. Journal of Applied Physics, 108: 084701.
    [5] Barton R A, Ilic B, Verbridge S S, Cipriany B R, Parpia J M, Craighead H G.2010. Fabrication of a Nanomechanical Mass Sensor Containing a Nanofluidic Channel. Nano Letters, 10: 2058-2063.
    [6] Beardslee L A, Addous A M, Heinrich S, Josse F, Dufour I, Brand O.2010. Thermal excitation and piezoresistive detection of cantilever in-plane resonance modes for sensing applications. Journal of Microelectromechanical Systems, 19: 1015-1017.
    [7] Belardinelli P, Ghatkesar M K, Staufer U, Alijani F.2017. Linear and non-linear vibrations of fluid-filled hollow microcantilevers interacting with small particles. International Journal of Non-Linear Mechanics, 93: 30-40.
    [8] Berger R, Delamarche E, Lang H P, Gerber C, Gimzewski J K, Meyer E, Guntherodt H J.1997. Surface stress in the self-assembly of alkanethiols on gold. Science, 276: 2021-2024.
    [9] Bryan A K, Hecht V C, Shen W, Payer K, Grover W H, Manalis S R.2014. Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Lab on A Chip, 14: 569-576.
    [10] Burg T P, Godin M, Knudsen S M, Shen W, Carlson G, Foster J S, Babcock K, Manalis S R.2007. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature, 446: 1066-1069.
    [11] Burg T P, Manalis S R.2003. Suspended microchannel resonators for biomolecular detection. Applied Physics Letters, 83: 2698-2700.
    [12] Burg T P, Mirza A R, Milovic N, Tsau C H, Popescu G A, Foster J S, Manalis S R.2006. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Journal of Microelectromechanical Systems, 15: 1466-1476.
    [13] Burg T P, Sader J E, Manalis S R.2009. Nonmonotonic energy dissipation in microfluidic resonators. Physical Review Letters, 102: 228103.
    [14] Cermak N, Olcum S, Delgado F F, Wasserman S C, Payer K R, M AM, Knudsen S M, Kimmerling R J, Stevens M M, Kikuchi Y.2016. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nature Biotechnology, 34: 1052-1059.
    [15] Cherian S, Thundat T.2002. Determination of adsorption-induced variation in the spring constant of a microcantilever. Applied Physics Letters, 80: 2219-2221.
    [16] Cleland A N, Roukes M L.2002. Noise processes in nanomechanical resonators. Journal of Applied Physics, 92: 2758-2769.
    [17] Dai H L, Abdelkefi A, Wang L.2014. Modeling and nonlinear dynamics of fluid-conveying risers under hybrid excitations. International Journal of Engineering Science, 81: 1-14.
    [18] Dai H L, Wu P, Wang L.2017. Nonlinear dynamic responses of electrostatically actuated microcantilevers containing internal fluid flow. Microfluidics and Nanofluidics, 21: 162.
    [19] Dareing D W, Thundat T.2005. Simulation of adsorption-induced stress of a microcantilever sensor. Journal of Applied Physics, 97: 043526.
    [20] De S K, Aluru N.2004. Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS. Journal of Microelectromechanical Systems, 13: 737-758.
    [21] Dohn S, Schmid S, Amiot F, Boisen A.2007. Mass and position determination of attached particles on cantilever based mass sensors. Review of Scientific Instruments, 78: 103303.
    [22] Ekinci K L, Yang Y T, Roukes M L.2004. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. Journal of Applied Physics, 95: 2682-2689.
    [23] Folzer E, Khan T A, Schmidt R, Finkler C, Huwyler J, Mahler H C, Koulov A V.2015. Determination of the Density of Protein Particles Using a Suspended Microchannel Resonator. Journal of Pharmaceutical Sciences, 104: 4034-4040.
    [24] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, Guntherodt H J, Gerber C, Gimzewski J K.2000. Translating biomolecular recognition into nanomechanics. Science, 288: 316-318.
    [25] Ghatkesar M K, Braun T, Barwich V, Ramseyer J P, Gerber C, Hegner M, Lang H P.2008. Resonating modes of vibrating microcantilevers in liquid. Applied Physics Letters, 92: 12.
    [26] Ghayesh MH, Farokhi H.2018. On the viscoelastic dynamics of fluid-conveying microtubes. International Journal of Engineering Science, 127: 186-200.
    [27] Godin M, Bryan A K, Burg T P, Babcock K, Manalis S R.2007. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Applied Physics Letters, 91: 123121.
    [28] Godin M, Delgado F F, Son S, Grover W H, Bryan A K, Tzur A, Jorgensen P, Payer K, Grossman A D, Kirschner M W.2010. Using buoyant mass to measure the growth of single cells. Nature Methods, 7: 387-390.
    [29] Green C P, Sader J E.1998. Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 92: 6262-6274.
    [30] Hashem E, Khan M F, Kamaljit K, Thomas T.2016. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nature Communications, 7: 12947.
    [31] He F, Dai H, Huang Z, Wang L.2017. Nonlinear dynamics of a fluid-conveying pipe under the combined action of cross-flow and top-end excitations. Applied Ocean Research, 62: 199-209.
    [32] Hwang K S, Eom K, Lee J H, Chun D W, Cha B H, Yoon D S, Kim T S, Park J H.2006. Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Applied Physics Letters, 89: 173905.
    [33] Jensen K, Kim K, Zettl A.2008a. An atomic-resolution nanomechanical mass sensor. Nature Nanotechnology, 3: 533.
    [34] Jensen K, Kim K, Zettl A.2008b. An atomic-resolution nanomechanical mass sensor. Nature Nanotechnology, 3: 533-537.
    [35] Johnson B N, Mutharasan R.2011. Persistence of bending and torsional modes in piezoelectric-excited millimeter-sized cantilever (PEMC) sensors in viscous liquids - 1 to 10 3 cP. Journal of Applied Physics, 109: 946.
    [36] Karabalin R B, Villanueva L G, Matheny M H, Sader J E, Roukes M L.2012. Stress-induced variations in the stiffness of micro- and nanocantilever beams. Physical Review Letters, 108: 236101.
    [37] Khan M F, Schmid S, Larsen P E, Davis Z J, Yan W, Stenby E H, Boisen A.2013. Online measurement of mass density and viscosity of pL fluid samples with suspended microchannel resonator. Sensors and Actuators B-Chemical, 185: 456-461.
    [38] Kim J, Song J, Kim K, Kim S, Song J, Kim N, Khan M F, Zhang L, Sader J E, Park K, Kim D, Thundat T, Lee J.2016. Hollow microtube resonators via silicon self-assembly toward subattogram mass sensing applications. Nano Letters, 16: 1537-1545.
    [39] Lachut M J, Sader J E.2007. Effect of surface stress on the stiffness of cantilever plates. Physical Review Letters, 99: 206102.
    [40] Lagowski J, Gatos H C, Sproles E S Jr.1975. Surface stress and the normal mode of vibration of thin crystals: GaAs. Photopiezoelectric effect. Applied Physics Letters, 26: 493-495.
    [41] Lee D, Kim S, Jung N, Thundat T, Jeon S.2009. Effects of gold patterning on the bending profile and frequency response of a microcantilever. Journal of Applied Physics, 106: 224104.
    [42] Lee I, Park K, Lee J.2012. Note: precision viscosity measurement using suspended microchannel resonators. Review of Scientific Instruments, 83: 116106.
    [43] Lee J, Bryan A K, Manalis S R.2011. High precision particle mass sensing using microchannel resonators in the second vibration mode. Review of Scientific Instruments, 82: 023704.
    [44] Lee J, Chunara R, Shen W, Payer K, Babcock K, Burg T P, Manalis S R.2011. Suspended microchannel resonators with piezoresistive sensors. Lab on A Chip, 11: 645-651.
    [45] Lee J, Shen W, Payer K, Burg T P, Manalis S R.2010. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Letters, 10: 2537-2542.
    [46] Lei X W, Natsuki T, Shi J X, Ni Q Q.2013. An atomic-resolution nanomechanical mass sensor based on circular monolayer graphene sheet: Theoretical analysis of vibrational properties. Journal of Applied Physics, 113: 385.
    [47] Lu P, Lee H P, Lu C, O'Shea S J.2005. Surface stress effects on the resonance properties of cantilever sensors. Physical Review B, 72: 085405.
    [48] Marzban M, Packirisamy M, Dargahi J.2017. 3D suspended polymeric microfluidics (SPMF3) with flow orthogonal to bending (FOB) for fluid analysis through kinematic viscosity. Applied Sciences, 7: 1048.
    [49] McFarland A W, Poggi M A, Doyle M J, Bottomley L A, Colton J S.2005. Influence of surface stress on the resonance behavior of microcantilevers. Applied Physics Letters, 87: 053505.
    [50] Minhyuk Y, Lee I, Sangmin J, Jungchul L.2014. Facile phase transition measurements for nanogram level liquid samples using suspended microchannel resonators. IEEE Sensors Journal, 14: 781-785.
    [51] Modena M M, Wang Y, Riedel D, Burg T P.2014. Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Lab on A Chip, 14: 342-350.
    [52] Mojahedi M Z, M M. Ahmadian M T.2010. Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method. Applied Mathematical Modelling, 34: 1032-1041.
    [53] Nayfeh A H, Younis M I, Abdel-Rahman E M.2005. Reduced-order models for MEMS applications. Nonlinear Dynamics, 41: 211-236.
    [54] Nayfeh A H, Younis M I, Abdel-Rahman E M.2007. Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48: 153-163.
    [55] Nejadnik M R, Jiskoot W.2015. Measurement of the average mass of proteins adsorbed to a nanoparticle by using a suspended microchannel resonator. Journal of Pharmaceutical Sciences, 104: 698-704.
    [56] Olcum S, Cermak N, Wasserman S C, Christine K S, Atsumi H, Payer K R, Shen W, Lee J, Belcher A M, Bhatia S N.2014. Weighing nanoparticles in solution at the attogram scale. Proceedings of the National Academy of Sciences of the United States of America, 111: 1310-1315.
    [57] Olcum S, Cermak N, Wasserman S C, Manalis S R.2015. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions. Nature Communications, 6: 7070.
    [58] Paidoussis MP, 1998.Fluid-Structure Interactions: Slender Structures And Axial Flow. Academic Press.
    [59] Ramos D, Tamayo J, Mertens J, Calleja M, Zaballos A.2006. Origin of the response of nanomechanical resonators to bacteria adsorption. Journal of Applied Physics, 100: 106105.
    [60] Rhoads J F, Shaw S W, Turner K L.2006. The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. Journal of Micromechanics and Microengineering, 16: 890.
    [61] Rinaldi S, Prabhakar S, Vengallatore S, Paidoussis MP.2010. Dynamics of microscale pipes containing internal fluid flow: Damping, frequency shift, and stability. Journal of Sound and Vibration, 329: 1081-1088.
    [62] Sader J E.1998. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 84: 64-76.
    [63] Sader J E, Burg T P, Lee J, Manalis S R.2011. Energy dissipation in microfluidic beam resonators: Effect of Poisson's ratio. Physical Review E, 84: 026304.
    [64] Sader J E, Burg T P, Manalis S R.2010a. Energy dissipation in microfluidic beam resonators. Journal of Fluid Mechanics, 650: 215-250.
    [65] Sader J E, Lee J, Manalis S R.2010b. Energy dissipation in microfluidic beam resonators: Dependence on mode number. Journal of Applied Physics, 108: 114507.
    [66] Sansa M, Sage E, Bullard E C, Gely M, Alava T, Colinet E, Naik A K, Villanueva L G, Duraffourg L, Roukes M L, Jourdan G, Hentz S.2016. Frequency fluctuations in silicon nanoresonators. Nature Nanotechnology, 11: 552.
    [67] Sarid D, 1994. Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces. USA: Oxford University Press.
    [68] Setoodeh A, Afrahim S.2014. Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Composite Structures, 116: 128-135.
    [69] Son S, Grover W H, Burg T P, Manalis S R.2008. Suspended microchannel resonators for ultralow volume universal detection. Analytical Chemistry, 80: 4757-4760.
    [70] Tamayo J, Ramos D, Mertens J, Calleja M.2006. Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Applied Physics Letters, 89: 224104.
    [71] Vakilzadeh M, Vatankhah R, Eghtesad M.2017. Dynamics and vibration analysis of suspended microchannel resonators based on strain gradient theory. Microsystem Technologies, 24: 1-11.
    [72] Vig J R, Kim Y.1999. Noise in microelectromechanical system resonators. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 46: 1558-1565.
    [73] Villanueva L G, Karabalin R B, Matheny M H, Kenig E, Cross M C, Roukes M L.2011. A Nanoscale Parametric Feedback Oscillator. Nano Letters, 11: 5054-5059.
    [74] Wang L.2010. Size-dependent vibration characteristics of fluid-conveying microtubes. Journal of Fluids and Structures, 26: 675-684.
    [75] Wang L, Liu H T, Ni Q, Wu Y.2013. Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. International Journal of Engineering Science, 71: 92-101.
    [76] Wang Y, Modena M M, Platen M, Schaap I A T, Burg TP.2015. Label-free measurement of amyloid elongation by suspended microchannel resonators. Analytical Chemistry, 87: 1821-1828.
    [77] Wang Y, Ni Q, Wang L, Luo Y, Yan H.2017a. Nonlinear impacting oscillations of pipe conveying pulsating fluid subjected to distributed motion constraints. Journal of Mechanics of Materials & Structures, 12: 563-578.
    [78] Wang Y, Wang L, Ni Q, Dai H, Yan H, Luo Y.2018. Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dynamics, 1-20.
    [79] Wang Y K, Qiao N I, Wang L, Yan H, Luo Y Y, Mechanics D O.2017b. Three-dimensional nonlinear dynamics of a cantilevered pipe conveying fluid subjected to loose constraints. Chinese Science Bulletin, 62: 4270-4277.
    [80] Weng Y, Delgado FF, Son S, Burg TP, Wasserman SC, Manalis SR.2011a. Mass sensors with mechanical traps for weighing single cells in different fluids. Lab on A Chip, 11: 4174-4180.
    [81] Weng Y, Delgado F F, Son S, Burg T P, Wasserman S C, Manalis S R.2011b. Mass sensors with mechanical traps for weighing single cells in different fluids. Lab on A Chip, 11: 4174.
    [82] William H. Grover A K B, Monica Diez-Silva, Subra Suresh, John M. Higgins, Scott R. Manalis.2011. Measuring single-cell density. Proceedings of the National Academy of Sciences of the United States of America, 108: 10992-10996.
    [83] Yan H, Zhang W M, Jiang H M, Hu K M.2017a. Pull-in effect of suspended microchannel resonator sensor subjected to electrostatic. Actuation. Sensors, 17: 114.
    [84] Yan H, Zhang W M, Jiang H M, Hu K M, Hong F J, Peng Z K, Meng G.2017b. A measurement criterion for accurate mass detection using vibrating suspended microchannel resonators. Journal of Sound and Vibration, 403: 1-20.
    [85] Yan H, Zhang W M, Jiang H M, Hu K M, Peng Z K, Meng G.2016. Dynamical characteristics of fluid-conveying microbeams actuated by electrostatic force. Microfluidics & Nanofluidics, 20: 137.
    [86] Yang C W, Ding R F, Lai S H, Liao H S, Lai W C, Huang K Y, Chang C S, Hwang I S.2013. Torsional resonance mode atomic force microscopy in liquid with Lorentz force actuation. Nanotechnology, 24: 305702.
    [87] Yin Z.2014. Detecting the stiffness and mass of biochemical adsorbates by a resonator sensor. Sensors and Actuators B: Chemical, 202: 286-293.
    [88] Zhang J, Meguid S.2016. Effect of surface energy on the dynamic response and instability of fluid-conveying nanobeams. European Journal of Mechanics-A/Solids, 58: 1-9.
    [89] Zhang W M, Yan H, Peng Z K, Meng G.2014. Electrostatic pull-in instability in MEMS/NEMS: A review. Sensors and Actuators A: Physical, 214: 187-218.
    [90] Zhang W M, Yan H, Jiang H M, Hu K M, Peng Z K, Meng G.2016. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation. Journal of Sound and Vibration, 368: 103-120.
    [91] Zhang Y.2013. Determining the adsorption-induced surface stress and mass by measuring the shifts of resonant frequencies. Sensors and Actuators a-Physical, 194: 169-175.
    [92] Zhang Y.2014. Detecting the stiffness and mass of biochemical adsorbates by a resonator sensor. Sensors and Actuators B-Chemical, 202: 286-293.
    [93] Zhang Y, Ren Q, Zhao Y P.2004. Modelling analysis of surface stress on a rectangular cantilever beam. Journal of Physics D-Applied Physics, 37: 2140-2145.
    [94] Zhang Y, Zhao Y P.2015. Mass and force sensing of an adsorbate on a beam resonator sensor. Sensors, 15: 14871-14886.
    [95] Zhang Y, Zhuo L J, Zhao H S.2013. Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 469: 20130449.
    [96] Zhou X W, Dai H L, Wang L.2018. Dynamics of axially functionally graded cantilevered pipes conveying fluid. Composite Structures, 190: 112-118.
  • 加载中
计量
  • 文章访问数:  2376
  • HTML全文浏览量:  274
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22
  • 刊出日期:  2019-02-08

目录

    /

    返回文章
    返回