首页 > 欢迎您访问力学进展网站! English

力学进展 ›› 2014, Vol. 44 ›› Issue (44): 201404-201404.doi: 10.6052/1000-0992-13-091

• 综述 • 上一篇    下一篇

智能软材料热-电-化-力学耦合问题的研究进展

杨庆生,魏巍,马连华   

  1. 北京工业大学工程力学系
  • 收稿日期:2013-12-31 修回日期:2014-06-27 出版日期:2014-04-01 发布日期:2014-09-18
  • 通讯作者: 杨庆生,北京工业大学固体力学教授,国家级基础力学教学团队负责人,北京市教学名师. E-mail:qsyang@bjut.edu.cn
  • 基金资助:
    国家自然科学基金(10272006,30470439,10872011,11172012), 北京市自然科学基金(3092006)和教育部博士点基金(20101103110005)资助项目.

Research advances in thermo-electro-chemo-mechanical coupling problem for intelligent soft materials

Qingsheng Yang , Wei Wei , Lianhua Ma   

  1. Department of Engineering Mechanics, Beijing University of Technology
  • Received:2013-12-31 Revised:2014-06-27 Online:2014-04-01 Published:2014-09-18

摘要:

本文重点评述了自然界中的典型智能软材料:聚合物胶体和水凝胶以及关节软骨的多场耦合力学问题的国内外研究现状。基于唯象热力学理论和哈密顿原理,建立了一般性的热-电-化-力学多场耦合理论。重点针对等温过程的化学-力学耦合本构关系和控制方程,通过哈密顿原理,建立了化力耦合系统的有限元列式。证明了化学-力学耦合理论架构的封闭性。通过数值算例分析了水凝胶和关节软骨的多场耦合作用。最后展望了智能软材料多场耦合研究的未来发展趋势。

关键词:

智能软材料|热--电--化--力学耦合|化学--力学耦合|本构方程|哈密顿原理|有限元法

Abstract:

This paper presents an overview of research on multi-field coupled mechanics for typical intelligent soft materials, including polymer gels, hydrogels biological soft tissues and so on. Attention is paid to the foundamental theory and research methods of thermo-electro-chemo-mechanical coupling behavior for such materials. The typical progresses on this issue in research groups over the world are reviewed. Based on phenomenological thermodynamics theory and Hamilton principle, a general theory framework on thermo-electro-chemo-mechanical coupling problem is established. The finite element formulation and one-dimesional analytical solution of the chemo-mechanical coupled systems are obtained. Several numerical examples are used to illustrate the multi-field coulped behavior of hydrogels and articular cartilages. Finally, the research topics and trends in future on the multi-field coupling for intelligent soft materials are discussed.

Key words:

intelligent soft materials|thermo-electro-chemo-mechanical coupling|chemomechanical coupling|constitutive equations|Hamilton&rsquo, s principle|finite element method